PLGA Microparticles Entrapping Chitosan-Based Nanoparticles for the Ocular Delivery of Ranibizumab.

نویسندگان

  • Naba Elsaid
  • Timothy L Jackson
  • Zeeneh Elsaid
  • Aljawharah Alqathama
  • Satyanarayana Somavarapu
چکیده

Age-related macular degeneration (AMD) is the leading cause of certified vision loss worldwide. The standard treatment for neovascular AMD involves repeated intravitreal injections of therapeutic proteins directed against vascular endothelial growth factor, such as ranibizumab. Biodegradable polymers, such as poly(lactic-co-glycolic acid) (PLGA), form delivery vehicles which can be used to treat posterior segment eye diseases, but suffer from poor protein loading and release. This work describes a "system-within-system", PLGA microparticles incorporating chitosan-based nanoparticles, for improved loading and sustained intravitreal delivery of ranibizumab. Chitosan-N-acetyl-l-cysteine (CNAC) was synthesized and its synthesis confirmed using FT-IR and (1)H NMR. Chitosan-based nanoparticles composed of CNAC, CNAC/tripolyphosphate (CNAC/TPP), chitosan, chitosan/TPP (chit/TPP), or chit/TPP-hyaluronic acid (chit/TPP-HA) were incorporated in PLGA microparticles using a modified w/o/w double emulsion method. Nanoparticles and final nanoparticles-within-microparticles were characterized for their protein-nanoparticle interaction, size, zeta potential, morphology, protein loading, stability, in vitro release, in vivo antiangiogenic activity, and effects on cell viability. The prepared nanoparticles were 17-350 nm in size and had zeta potentials of -1.4 to +12 mV. Microscopic imaging revealed spherical nanoparticles on the surface of PLGA microparticles for preparations containing chit/TPP, CNAC, and CNAC/TPP. Ranibizumab entrapment efficiency in the preparations varied between 13 and 69% and was highest for the PLGA microparticles containing CNAC nanoparticles. This preparation also showed the slowest release with no initial burst release compared to all other preparations. Incorporation of TPP to this formulation increased the rate of protein release and reduced entrapment efficiency. PLGA microparticles containing chit/TPP-HA showed the fastest and near-complete release of ranibizumab. All of the prepared empty particles showed no effect on cell viability up to a concentration of 12.5 mg/mL. Ranibizumab released from all preparations maintained its structural integrity and in vitro activity. The chit/TPP-HA preparation enhanced antiangiogenic activity and may provide a potential biocompatible platform for enhanced antiangiogenic activity in combination with ranibizumab. In conclusion, the PLGA microparticles containing CNAC nanoparticles showed significantly improved ranibizumab loading and release profile. This novel drug delivery system may have potential for improved intravitreal delivery of therapeutic proteins, thereby reducing the frequency, risk, and cost of burdensome intravitreal injections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles.

Polyelectrolyte-coated nanoparticles or microparticles interact with bioactive molecules (peptides, proteins or nucleic acids) and have been proposed as delivery systems for these molecules. However, the mechanism of adsorption of polyelectrolyte onto particles remains unsolved. In this study, cationic poly(lactide-co-glycolide) (PLGA) nanoparticles were fabricated by adsorption of various conc...

متن کامل

Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparat...

متن کامل

Evaluation of Neuroprotective Effect of Thymoquinone Nanoformulation in the Rodent Cerebral Ischemia-Reperfusion Model

The purpose of the present study was to evaluate the neuroprotective efficacy of optimized thymoquinone loaded PLGA-chitosan nanoparticles delivered via nose to brain route in the rodent cerebral ischemia-reperfusion model. The neuroprotective efficacy of the optimized thymoquinone loaded PLGA-chitosan nanoparticles was evaluated in middle cerebral artery occluded rats by various pharmacodynami...

متن کامل

Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions

Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...

متن کامل

Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading

Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2016